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SUMMARY Machine transliteration is an automatic method
to generate characters or words in one alphabetical system for
the corresponding characters in another alphabetical system.
Machine transliteration can play an important role in natural
language application such as information retrieval and machine
translation, especially for handling proper nouns and technical
terms. The previous works focus on either a grapheme-based
or phoneme-based method. However, transliteration is an or-
thographical and phonetic converting process. Therefore, both
grapheme and phoneme information should be considered in ma-
chine transliteration. In this paper, we propose a grapheme and
phoneme-based transliteration model and compare it with pre-
vious grapheme-based and phoneme-based models using several
machine learning techniques. Our method shows about 13∼78%
performance improvement.
key words: Machine Transliteration, Machine learning, Infor-
mation retrieval, Machine translation, Natural language process-
ing

1. Introduction

Machine transliteration is an automatic method to gen-
erate characters or words in one alphabetical system
for the corresponding characters in another alphabeti-
cal system. Transliteration is used to translate proper
names and technical terms especially from languages
in Roman alphabets to languages in non-Roman alpha-
bets such as from English to Korean, Japanese, Chinese
and so on. One possible method to generate translit-
eration is based on the use of dictionaries, which con-
tains English words and their possible transliterated
forms. However, this is not a practical solution since
proper nouns and technical terms, which are frequently
transliterated, usually have rich productivity. Another
method is machine transliteration. Some research has
been done on machine transliteration from English to
other languages including English to Japanese [1], En-
glish to Chinese [2] and English to Korean [3]–[8].

Machine transliteration plays an important role
in natural language applications such as monolingual
information retrieval [6], cross-lingual information re-
trieval [3] and machine translation [9]. From the view-
point of monolingual information retrieval, machine
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transliteration bridges the gap between the transliter-
ated localized form and its original form by generat-
ing all possible transliterated forms from each origi-
nal form. In domain-specific literature, proper nouns
and technical terms are either written in their original
forms and or they are transliterated into local words.
Because of the variations of localization, it is difficult
to retrieve relevant documents when either a transliter-
ated form or its corresponding original word is indexed
without any relations established between them even
though they indicate the same word. This is called
“vocabulary mismatch”, a problem caused by the non-
standardized transliterations of a word from its origi-
nal form. “Transliteration equivalence” refers to a set
of the same words that include all possible transliter-
ated forms and the original word. For example, Korean
transliterations, ‘de-i-ta’, ‘de-i-teo’, and ‘de-ta’∗, are
“transliteration equivalence” derived from the English
word data. From the viewpoint of machine translation,
machine transliteration generates translations of proper
nouns and technical terms that are not registered in a
translation dictionary.

In English-to-Korean transliteration, two machine
transliteration methods have been studied: “grapheme-
based transliteration method” and “phoneme-based
transliteration method”. “Graphemes” refer to the ba-
sic unit (or the smallest contrastive units) of written
language: for example, English has 26 graphemes or let-
ters, Korean has 24, and Japanese has 50. “Phonemes”
are the simplest significant unit of sound (or the small-
est contrastive units of the spoken language): for ex-
ample, the /M/, /AE/, and /TH/∗∗ in math. In this
paper, we will symbolize the grapheme-based translit-
eration method as ψGT , and the phoneme-based one as
ψPT , for simplicity. Note that grapheme-based translit-

∗In this paper, Korean transliterated results or Korean
transcriptions will be represented in a quotation mark (‘’).
A symbol ‘-’ will be used for indicating a syllable boundary.
∗∗(www.cs.cmu.edu/∼laura/pages/arpabet.ps). ARPA-

bet symbol will be used for representing phonemes. ARPA-
bet is one of the methods used for coding phonemes into
ASCII characters In this paper, we will denote phonemes
and pronunciation with two slashes like so: /AH/. Pro-
nunciation represented in this paper is based on The CMU
Pronunciation Dictionary and The American Heritage(r)
Dictionary of the English Language.
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eration and phoneme-based transliteration will stand
for the transliteration results generated by ψGT and
ψPT , respectively. ψGT is a one-step converting pro-
cess from an English grapheme to Korean graphemes;
while ψPT is a pipelined two-step converting process —
from an English grapheme to phoneme and then again
to a Korean grapheme. Because ψPT needs phoneme
information that cannot be directly acquired from the
English word alone, one more converting step from the
grapheme to the phoneme is necessary.

Transliterated results generated by the two meth-
ods are usually different because they generate translit-
erations based on different information. Though
transliteration is a more phonetic process (ψPT ) than
orthographic one (ψGT ) [9], we should consider both
phoneme and grapheme information to obtain a more
accurate transliterated result since many translitera-
tions are generated by ψPT as well as by ψGT

† However,
previous works choose either phoneme information or
grapheme information as their focus, meaning they sim-
plify a transliteration problem into either ψGT or ψPT

and assume that one of them is able to cover translit-
erations generated by the other. Their approach is un-
natural because there are transliterations either ψGT

or ψPT fails to generate. For example, a standard Ko-
rean transliteration of amylase, ‘a-mil-la-a-je’, which is
a grapheme-based transliteration, cannot be generated
by ψPT . ψPT generates ‘a-mil-le-i-seu’ based on /AE
M AH L EY S/ rather than the standard, ‘a-mil-la-
a-je’. To overcome this problem, we should consider
both grapheme and phoneme information for machine
transliteration.

We propose a new machine transliteration method
based on both grapheme and phoneme information
symbolized as ψGPT . Our method has some advan-
tages over ψGT and ψPT in that ψGPT can handle a
grapheme-based transliteration as well as a phoneme-
based transliteration in the same framework since it
considers phoneme information as well as grapheme
information. ψGPT can (1) reduce the ambiguity of
transliterations, and (2) negotiate between the source
language grapheme and the phoneme. First, ψGPT

can reduce ambiguities of transliterations which ψPT or
ψGT cannot by using grapheme and its corresponding
phonemes during the transliteration process. Translit-
eration is used to find the most relevant one among
transliteration candidates derived from the grapheme
or phoneme of source language words. Intuitively, if
there are more transliteration candidates for certain
graphemes or phonemes, it becomes more difficult to
obtain relevant transliterations. As such, effectively re-
ducing the ambiguities or the number of transliteration

†In our English-to-Korean transliteration test set [5],
[10], we find that about 60% are a phoneme-based translit-
erations, while about 30% are grapheme-based ones. The
others are transliterations generated by combining ψGT and
ψPT .

candidates is the key to making an effective machine
transliteration system. From the viewpoint of reduc-
ing ambiguities in transliteration, ψGPT has an advan-
tage over ψGT and ψPT since the former uses the corre-
spondence between grapheme and phoneme. For exam-
ple, in ψPT , phoneme /AH/ produces high ambiguities
since it can be mapped to almost every single vowel in
the source and target languages; for example, under-
lined grapheme corresponds to /AH/: cinema, counsel,
ability in English, and their Korean transliterations ‘si-
ne-ma’, ‘ka-un-sel’, ‘eo-bil-li-ti’. If we know the corre-
spondence between grapheme and phoneme in this con-
text, we can more easily infer its transliteration, since
a target language transliteration of /AH/ usually de-
pends on the source language grapheme corresponding
to /AH/. In an example of ψGT , a Korean transliter-
ation result of grapheme i can be ‘i’, ‘a-i’ and so on.
We can infer its correct transliteration by looking at its
corresponding phoneme such as /IH/, /AY/ and so on.
Second, ψGPT can handle the negotiation of grapheme
and phoneme information. Because the relevant target
language grapheme can be derived from either source
language grapheme or phoneme, it is important for a
machine transliteration system to select one of them in
a certain context. For example, the Korean grapheme
‘e’ can be derived only from English grapheme e in neo,
and the Korean grapheme ‘a-i’ can be derived only from
the phoneme /AY/ in /M AY S IH N/. ψGPT can de-
termine the relevancy of the English grapheme or the
phoneme by looking at their contexts.

2. Related Works

The previous works on English-to-Korean translit-
eration are classified into either grapheme-based or
phoneme-based transliteration model and these will be
described in Sect. 2.1 and 2.2, respectively.

2.1 Grapheme Based English-to-Korean Translitera-
tion

Grapheme-based transliteration models are classified
into statistical translation based model, decision tree
based model, and transliteration network based model.
The grapheme-based model is used simply to convert
an English grapheme to Korean graphemes. In this
section, we will describe the key points of each model.

2.1.1 Statistical Translation Based Model

Lee [3], [5] proposed a grapheme-based English-to-
Korean transliteration model based on the statistical
translation model. Equation (1) attempts to generate
a transliterated Korean word K for a given source En-
glish word E. He defined “pronunciation unit” (PU)
as graphemes that correspond to a phoneme. He then
segments an English word into pronunciation units
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(PUs) and attempts to find the most relevant Ko-
rean graphemes corresponding to the PUs. For ex-
ample, the English word ‘board (/B AO R D/)’ was
segmented into its pronunciation units like so, b(/B/):
oa(/AO/): r(/R/): d(/D/); here b, oa, r and d are
PUs. With them, an English word Ei is represented as
Ei = epui1, epui2, . . . , epuin where epuij is the jth PU
of Ei. Sequences of Korean PUs, kpui1, kpui2, , kpuin

are generated from Ei. Lee [3], [5] generated all possible
English PU sequences and their corresponding Korean
PU sequences. For example, board can be divided into
PU sequences such as b:oar:d, b:oa:r:d, b:o:a:r:d †† and
so on. All possible Korean PUs are then generated from
them such as ‘b:o:deu’, ‘b:o:reu:deu’, ‘b:o:a:reu:deu’
and so on. The best result is then selected among them
as a Korean transliteration word using Eq. (1).

argmaxKP (K|E) = argmaxKP (K)P (E|K) (1)

P (K) ∼= p(kpu1)
n∏

i=2

p(kpui|kpui−1)

P (E|K) ∼=
n∏

i=1

p(epui|kpui)

Kim [4] expanded Lee’s [3], [5] research by consid-
ering more information in estimating P (E|K), as in
Eq. (2) He used both additional information – Korean
PUs kpui−1 and kpui+1 – and a neural network, to
approximate P (E|K).

P (E|K) ∼=
n∏

i=1

p(epui|kpui−1, kpui, kpui+1) (2)

This approach is an effective model of the translit-
eration process with PU, which represents a phonetic
property of a source language word. But errors that oc-
cur in PU segmentation are hurdles in transliteration,
and generating all possible PUs for each side is a time
consuming process: If the total number of English PUs
is N and the average number of Korean PUs generated
by each English PU is M, the total number of generated
Korean PU sequences will be about N× M.

2.1.2 Decision Tree Based Model

Kang [6], [8] proposed an English grapheme-to-Korean
grapheme conversion method based on decision trees.
Seven contextual graphemes — the left three, right
three, and current English grapheme — are used for
determining Korean graphemes corresponding to En-
glish graphemes. For each English grapheme, its corre-
sponding decision trees are constructed. Table 1 shows
an example of a transliteration process for data. (E )

††‘:’ will be used as a PU boundary

Table 1 An example of decision tree based English-to-Korean
transliteration

L3 L2 L1 (E) R1 R2 R3 K

$ $ $ d a t a → ‘d’
$ $ d a t a $ → ‘e-i’
$ d a t a $ $ → ‘t’
d a t a $ $ $ → ‘a’

s/‘seu ’

s/‘j eu ’

sc /‘s’

c /‘keu ’

c /‘k’

a/‘a’

a/‘e-i’
l/‘l-l’

l/‘l-’

al/‘a’

r /‘l’

r /‘~’

$

a/‘a’

a/‘e-i’

ar /‘a’

$

Fig. 1 A Korean transliteration network for an English word
scalar

represents the current English grapheme; (L1, L2, L3 )
represent left contexts; (R1, R2, R3 ) represent right
contexts; K represents generated Korean graphemes by
decision trees; and $ represents the start and end of a
word.

The merit in this approach is its consideration of
wider contextual information. Unlike other grapheme
based methods, it takes into account the left three and
right three contexts. However, one drawback of the
method is that it does not consider any phonetic aspects
of transliteration.

2.1.3 Transliteration Network Based Model

Kang & Kim [7] proposed an English-Korean translit-
eration model based on a finite transition network.
They also focused on a direct grapheme-by-grapheme
conversion method from English graphemes to Korean
graphemes. All possible grapheme sequences are gen-
erated to make a transliteration network, as in Fig. 1.
Each node in the network is composed of more than one
English grapheme (including grapheme and chunk of
graphemes) and its corresponding Korean graphemes.
Each arc in the network is weighted with Eq. (3). “Con-
text” refers to the historical information of English
graphemes, where a specific Korean grapheme (“out-
put”) was generated. The best optimal path is found
by the highest sum of weights, with a Viterbi algorithm
[11] and a Tree-Trellis algorithm [12].

weight(context, output) =
C(output)
C(context)

(3)

The advantage here are: (1) consideration of the
phonetic aspect called ‘chunks of graphemes’ as well
as graphemes; and (2), unlike [3], [5], it performs an
one-step procedure using a transliteration network as
opposed to a two-step pipelined procedure (grapheme
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chunking then transliteration). However, some disad-
vantages include: (1) a somewhat limited context size
(2), although it considers the phonetic aspect on a
grapheme level, the information is not enough in that
further information, such as phonemes corresponding
to a grapheme (or a chunk of graphemes), is necessary
to generate relevant target language transliterations.

2.2 Phoneme-Based English-to-Korean Translitera-
tion Model

Lee [5] proposed a phoneme-based English-to-Korean
transliteration model. His model generates Korean
transliterations with two-step converting procedures;
an English PU-to-phoneme converting procedure that
uses a statistical translation based model described
in Sect. 2.1.1; and a phoneme-to-Korean PU convert-
ing procedure that relies on English-to-Korean Stan-
dard Conversion Rules (EKSCR) [13] which describes
transliteration rules from English phonemes to Korean
graphemes using phoneme as a condition, and outputs
Korean graphemes if the condition met.

This approach suffers two main disadvantages: (1)
error propagation, and (2) limitations in EKSCR. First,
an English PU-to-phoneme converting procedure usu-
ally makes errors and the errors which are then propa-
gated to the next step. The propagated errors make it
difficult for a transliteration system to generate relevant
transliterations. Second, the EKSCR does not contain
enough rules to generate relevant Korean translitera-
tions since its main focus is on a methods of mapping
from one English phoneme to one Korean grapheme
without the context of graphemes and phonemes. For
example, the English word board and its pronuncia-
tion /B AO R D/ are transliterated into ‘bo-reu-deu’
by EKSCR. However, the correct one, ‘bo-deu’, can
be acquired when their contexts are considered. Due
to these limitations, this phoneme-based model shows
worse performance than the grapheme-based one de-
scribed in Sect. 2.1.1.

2.3 Summary

Most previous works are focused on ψGT rather than
ψPT , because the former has more advantages than the
latter. First, unlike ψPT , ψGT does not require any
knowledge about pronunciation, meaning while ψGT

requires only the [source language grapheme→target
language grapheme] conversion patterns, ψPT needs
the [source language grapheme→phoneme] conver-
sion patterns and the [pronunciation→target language
grapheme] conversion patterns. Second, there is an er-
ror propagation phenomenon in ψPT because it is com-
posed of two steps. Errors in the first step usually
make it difficult to generate correct transliterations in
the second step. This is the main reason why the per-
formance of ψPT is lower than that of ψGT , though

Machine learning based 
E-K  T ranslit erat ion

English word
EPK pairs

EPK 
alignment

EPK 
alignment

Korean Transliteration

Training Data for 
Pronunciation 

estimation

Data PreparationData Preparation

Training Data for 
Transliteartion

Machine learning based 
E-K Transliteration

Machine learning based 
E-K Transliteration

Pronunciation 
estimation 

Pronunciation 
estimation 

Pronunciation
Dic.  Search 

Pronunciation
Dic.  Search 

Machine transliterationMachine transliteration

Pronunciation 
Dictionary

Generating 
pronunciation

Eng.

d
r
a
o
b

G enerat ing
p ronu nciat ion

d
r
a
o
b
Eng.

/D /
/R /
/~/
/A O /
/B /
P ho.

/D /
/R /
/~/
/A O /
/B /
P ho.

d
r
a
o
b
Eng.

‘deu ’
‘~’
‘~’
‘o’
‘b’
K or.

Transliteration ExampleTransliteration Example

Fig. 2 The overall system architecture

many transliterations are phoneme-based translitera-
tions rather than grapheme-based transliterations.

However, ψGT also shows limitations. Though it is
a relatively simple and effective model, it hardly con-
siders phonetic features such as phonemes. This causes
errors when phoneme rather than grapheme provide im-
portant clues for generating the right transliteration.

Because of the nature of the two models, they
cannot consider both grapheme and phoneme simul-
taneously. This makes it difficult to generate relevant
transliteration, particularly when one model encoun-
ters source language words that should be transliter-
ated through negotiation between the source language
grapheme and phoneme or by a different translitera-
tion model. Our method, ψGPT , relieves the prob-
lems described above. Although, like ψPT , ψGPT re-
quires pronunciation knowledge, the latter can shield
against some errors caused by error propagation using
grapheme information corresponding to phoneme. Our
model can handle transliterations that either ψGT or
ψPT fail to generate.

3. Machine Learning Based English-to-Korean
Transliteration Model

The proposed overall system architecture of our
English-to-Korean machine transliteration system is
shown in Fig. 2. Our system is composed of two main
parts – data preparation and machine transliteration.

The goal of data preparation is to create training
data for our machine transliteration model. To achieve
the goal, we devise an EPK alignment algorithm.
The EPK alignment (Sect. 3.1) algorithm recognizes
the correspondence among the “English grapheme”,
“Phoneme” and the “Korean grapheme”. Because we
model a transliteration process as a converting process
from English grapheme and its corresponding phoneme
to Korean grapheme, the correspondences and their
contexts acquired from the EPK alignment give an ev-
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idence where certain English grapheme and phoneme
are transliterated into Korean graphemes in a spe-
cific context. Data acquired from the data preparation
part is used for training data of “estimating pronunci-
ation” and “generating transliteration” in the machine
transliteration part.

The machine transliteration part is a key part of
our system. The main goal is to generate the most
relevant Korean transliterated word. This part is com-
posed of “generating pronunciation” step and “gener-
ating transliteration” step. The generating pronuncia-
tion step is to generate pronunciations using pronunci-
ation dictionary and pronunciation estimation that is
based on machine learning algorithms. The generat-
ing transliteration step is to generate Korean translit-
erations based on grapheme and phoneme information
acquired from the previous step.

The bottom side of Fig. 2 shows our machine
transliteration process with an example board. First,
phonemes /B/, /AO/, /∼/, /R/ and /D/ that are cor-
responds to b, o, a, r, and d, respectively, are gener-
ated by the generating pronunciation step. Here, /∼/
means silence. Note that the result is a sequence of
the [English grapheme→phoneme] relations, because
our system utilizes the [English grapheme→phoneme]
conversion patterns. Next, Korean transliterations are
generated with the similar manner. A Korean translit-
eration result is a sequence of the [English grapheme,
phoneme→Korean grapheme] relations. Here, ‘∼’ is
null grapheme. By concatenating the sequence of Ko-
rean graphemes, we can get the Korean transliteration
‘bo-deu’. From Sect. 3.2 to Sect. 3.3, we will describe
details of our machine transliteration part.

3.1 EPK Alignment: Making Training Data For
English-to-Korean Machine Transliteration

For an English-to-Korean machine transliteration, we
need training data in order to make conversion pat-
terns. The training data should offer correspon-
dence among English grapheme, phoneme, and Ko-
rean grapheme because we need conversion patterns,
[English grapheme, phoneme → Korean grapheme] in
ψGPT and [English grapheme → phoneme] for estimat-
ing pronunciation.

Because constructing training data by hand is time
consuming and it is difficult to maintain consistency,
we devise an algorithm to automatically uncover cor-
respondences. We devise three alignment algorithms
called EP alignment, PK alignment, and EPK align-
ment, named according to the correspondences dealt
with by each algorithm. The EP alignment algorithm
finds the most phonetically probable correspondence
between English grapheme and phoneme; while the
PK alignment algorithm finds the most phonetically
probable correspondence between phoneme and Korean
grapheme; and the EPK alignment is a hybrid process

Table 2 One possible alignment result generated by the EP
alignment algorithm

English grapheme b o a r d
Pronunciation /B/ /AO/ /∼/ /R/ /D/

Table 3 One possible alignment generated by the PK align-
ment algorithm

Pronunciation /B/ /AO/ /R/ /D/
Korean grapheme ‘b’ ‘o’ ‘∼’ ‘deu’

Table 4 The EPK alignment result derived from Table 2 and
3

English grapheme b o a r d

Pronunciation /B/ /AO/ /∼/ /R/ /D/
Korean grapheme ‘b’ ‘o’ ‘∼’ ‘∼’ ‘deu’

of EP alignment and PK alignment that deals with cor-
respondences among English grapheme, phoneme and
Korean grapheme by combining results of EP and PK
alignment using phoneme information as a pivot.

Consider an example when the English word is
board, its corresponding pronunciation is /B AO R D/,
and its corresponding Korean word is ‘bo-deu’. We can
obtain the alignment results described in Table 2, 3,
and 4 using each alignment algorithm. The EPK align-
ment algorithm uses results generated by EP alignment
and PK alignment algorithms. Phonemes are used as
a pivot. In other words, it uses a mapping relation
of the same phoneme in an EP alignment result and a
PK alignment result. For example, in Table 2 and 3,
the English grapheme b is linked to phoneme /B/, and
phoneme /B/ is linked to Korean grapheme ‘b’, respec-
tively. We can then find an EPK alignment result for
English grapheme b as described in Table 4 by a tran-
sitive rule like (b → /B/ and /B/ → ‘b’ then b→ /B/
→ ‘b’).

Because an EP alignment algorithm and a PK
alignment algorithm share the same framework, in this
paper we will limit our discussion to the EP align-
ment algorithm. The EP and PK alignment algorithm
is based on Levenshtein distance (LD) algorithm [14].
LD is a measure of the similarity between two strings;
source string s and target string t. The distance is
the number of deletions, insertions, or substitutions re-
quired to transform s into t.

Similar to LD, EP alignment and PK alignment at-
tempt to find a way to phonetically transform s into
t with minimal cost. To model alignment algorithms,
we introduce the new operations and cost schemes into
LD. Instead of deletion, insertion and substitution oper-
ations used in LD, we introduce match (M), source side
skip (SS), and target side skip (TS) operations. Align-
ment units in both sides aligned with a match opera-
tion mean that they have had correspondence. Those
aligned with SS (TS ) mean that the current alignment
unit in the source side (the target side) is skipped and
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Table 5 Cost schemes for the EP and PK alignment

Operation Condition Cost

Match si and tj are phonetically similar 0
si is a semi-vowel and tj is a vowel 30
si is a vowel and tj is a semi-vowel 30
si and tj are phonetically 240
dissimilar consonants
si and tj are phonetically 100
dissimilar vowels
otherwise 250

Skip All conditions 40

that the target side (the source side) tends to be aligned
with the next alignment unit in the source side (the tar-
get side). In other words, SS (or TS ) ignores the cur-
rent alignment unit in the source side (or the current
one in the target side). Since the behavior of “match”,
“source side skip”, and “target side skip” are similar
to that of “substitution”, “deletion” and “insertion”,
respectively, we can use the framework of LD for our
alignment algorithm.

While LD assigns the same cost (say 1) to all opera-
tions (deletion, insertion, and substitution), we assign a
different cost to each operation according to properties
of alignment unit and operation type. Table 5 shows
manually constructed cost scheme that we used. Our
cost scheme is based on cost scheme of Kang’s align-
ment algorithm [8]. The basic philosophies of our cost
scheme are as follows:

• it assigns a low cost between phonetically similar
alignment units

• it prefers a match operation to a skip operation
when si and tj are phonetically similar

• it prefers a skip operation to a match operation
when si and tj are phonetically dissimilar.

Manually constructed similarity tables are used for
determining whether two alignment units (si and tj) are
phonetically similar or not. For example, EP similarity
table describes that English grapheme b and phoneme
/B/ is phonetically similar. PK similarity table con-
tains that phoneme /DH/ is phonetically similar to Ko-
rean grapheme ‘d’ and ‘j’.

An alignment process is similar to the LD algo-
rithm. First, a matrix for alignment (D) between input
strings (s and t) is constructed with the initial value
(Eq. (4)).

d[i, 0] = i× 300; (4)
d[0, j] = j × 300;

Second, the algorithm assigns the most relevant
operation and its cost to each cell (d[i, j]) in D (Eq. (5)).

d[i, j].cost = min(a, b, c); (5)
d[i, j].op = op(argmin(a, b, c));

a = d[i− 1, j].cost
+cost(S(st, tj)); op = SS

I=5

I=4

I=3

I=2

I=1

I=0

J =4J =3J =2J =1J =0

8 0  [ T S ]40 [M ] *8 0  [ S S ]1 2 0  [ S S ]1 2 0 0r

8 0  [ S S ]

8 0  [ S S ]

4 0  [ T S ]

8 0  [ T S ]

9 0 0
/R /

40 [M ] *1 2 0  [ S S ]1 6 0  [ S S ]1 50 0d

1 2 0  [ T S ]40 [S S ] *8 0  [ S S ]9 0 0a

8 0  [ T S ]0 [M ] *4 0  [ S S ]6 0 0o

1 2 0  [ T S ]4 0  [ T S ]0 [M ] *3 0 0b

1 2 0 06 0 03 0 00*$ 
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nglish graphem

e (source side)

Phoneme (target side)

Fig. 3 An example of an EP alignment

b = d[i, j − 1].cost
+cost(S(st, tj)); op = TS

c = d[i− 1, j − 1].cost
+cost(M(st, tj)); op = M

Finally the algorithm tries to retrieve the best
alignment result using the cell’s operation and its cost
calculated in the previous steps.

Figure 3 shows an alignment example between the
English word board, and its pronunciation, /B AO R
D/, where $ is dummy letter; it represents the start of
strings and it’s index is 0. In Fig. 3, each cell contains
its minimal cost derived from its operation. The best
alignment result can be acquired by retrieving the cells
represented with ‘∗’ from d[n,m] to d[0, 0] where n and
m are the length of s and t, respectively. The next cell
that should be retrieved is determined by the cell’s op-
eration. In the case of M, the algorithm tries to retrieve
a cell from d[i, j] to d[i− 1, j − 1]. For SS (or TS ), the
next cell is d[i−1, j] (or d[i, j−1]). With these retrieval
rules, we can obtain the most relevant path, (d[5, 4] →
d[4, 3] → d[3, 2] → d[2, 2] → d[1, 1] → d[0, 0]) in Fig. 3,
that makes the lowest sum of costs.

Kang et al.[8] proposed an English-to-Korean
alignment algorithm. Though the alignment algorithm
shows high performance, it has high time complexity
(O(k(n+m))), where k is a kind of operation, n is the
length of input string in one side and m is the length
of input string in the other side. In order to consider
all possible correspondences, Kang et al.[8] constructs
an n − way branching search tree and then finds the
best result using a depth first search. Similar to our
alignment algorithm, manually constructed cost scheme
and similarity table determine the best alignment result
making lowest sum of costs. However, the search space
increases exponentially when the length of input strings
becomes longer. This is the reason why time complex-
ity of the alignment algorithm is O(k(n+m)). The time
complexity makes it difficult to construct large-scale
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training data. Our alignment algorithm reduces the
time complexity without loss of performance because
we adopt Kang’s cost scheme and similarity table that
describes phonetically similar alignment pairs. Because
we only need to calculate operation and its penalty
score in the n×m matrix to get an alignment result, the
time complexity of our algorithm becomes O(n×m).

Fujii et al.[15] proposed an English-to-Japanese
alignment algorithm similar to our alignment algo-
rithm. Given the English and Japanese katakana
words, the algorithm tries to find the correspondence
between English grapheme and katakana character us-
ing manually constructed similarity table and cost
scheme between English grapheme and grapheme in
katakana characters. The main difference between
our alignment algorithm and Fujii’s alignment algo-
rithm is the level of units in the alignment pairs that
each algorithm tries to find. The Fujii’s algorithm
tries to find the “grapheme-to-syllable (or grapheme-
to-katakana character) alignment pair” while our focus
is “grapheme-to-grapheme (or grapheme-to-phoneme)
alignment pair”. Therefore, our alignment results are
more fine-grained results than Fujii’s. For example, the
Fujii’s algorithm aligns English-Korean transliteration
pair, <text, ‘tek-seu-teu’>,as <tex, ‘tek seu’>, and <t,
‘teu’>; while ours more finely aligns it as <t, ‘t’>, <e,
‘e’>, <k, ‘k seu’>, and <t, ‘teu’>. With the same
manner, the Fujii’s aligns English-Japanese transliter-
ation pair, <text, ‘te-ki-su-to’>, as <te, ‘te’>, <x, ‘ki
su’>, and <t, ‘to’>; while ours more finely align it as
<t, ‘t’>, <e, ‘e’>, <k, ‘ki su’>, and <t, ‘to’>.

3.2 Grapheme and Phoneme Based English-to-
Korean Transliteration Model (ψGPT )

In this subsection, we will describe the overall frame-
work of grapheme and phoneme-based transliteration
model (ψGPT ). ψGPT is composed of two functions;
δp and δt (ψGPT : δp × δt). δp refers to a “generating
pronunciation function” and it outputs more than one
phoneme corresponding to input English grapheme si.
It can be represented as {δp(si); S → 2P } where P is
a set of phonemes, S is a set of English graphemes. δt

is a “generating transliteration function” and it out-
puts Korean graphemes for an English grapheme and
phoneme pair: {δt(si, δp(si)); δt : S × 2P → 2T } where
T is a set of Korean graphemes. Figure 4 summarizes
the overall framework of ψGPT .

Basically the two functions are trained by a su-
pervised learning method. To train each component
function, we should define the features that represent
training instances. Table 6 shows four feature types,
fS , fP , fGS , and fGP ; fS , fP , fGS and fGP represent
English grapheme feature, phoneme feature, general-
ized features of fS , and generalized feature of fP , re-
spectively. According to component functions, we use
different feature types. For example, δp(si) uses (fS ,

•Grapheme & Phoneme based transliteration model

•�GPT:δp × δt  (where δp: S →2P, and δt:S×2P→2T)

/D//R//~//AO//B/δp(si)

draobsi

‘deu’‘~’‘~’‘o’‘b’δt(si, δp(si))

draobsi

/D//R//~//AO//B/δp(si)

δpδp

δtδt

Fig. 4 The overall framework of ψGPT

Table 6 The feature types used for our machine transliteration
model

Feature type Description Possible feature values
fS English Graphemes 26 alphabets (a to z)

fP Phonemes Phonemes in 2P

(/AA/, /AE/, etc.)
fGS Generalized fS Consonant (C),

Vowel (V)

fGP Generalized fP Consonant (C),
Vowel(V)
Semi-vowel (SV),
silence (∼)

fGS); and δt(si, δp(si)) uses (fS , fP , fGS , fGP ).
From Sect. 3.2.1 to Sect. 3.2.2, we will describe

some details of the component functions. The following
machine learning algorithms — the maximum entropy
model [16], decision tree [17], [18], and memory-based
learning [19] — are used for training each component
function (δp and δt) and will be given in Sect. 3.3.

3.2.1 Generating Pronunciation

Generating pronunciation is composed of two steps.
The first step involves a search in a pronunciation dic-
tionary which contains English words and their pronun-
ciation. In this paper, we use The CMU Pronouncing
Dictionary [20], which contains 120,000 English words
and pronunciation pairs. The second step involves es-
timating pronunciation. If an English word is not reg-
istered in the dictionary, we must estimate its pronun-
ciation.

Let SW = s1, s2, . . . , sn be an English word, and
PSW = δp(s1), δp(s2), . . . , δp(sn) be SW ’s pronuncia-
tion, where si represents the ith grapheme and δp(si)
represents phonemes corresponding to si. Estimating
pronunciation is a task that involves finding the most
relevant phoneme among a set of all possible phoneme
candidates, which can be generated from grapheme si.
Training data is acquired from the EP alignment result
of The CMU Pronouncing Dictionary. Features used
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t y p e

I n de x

Fig. 5 An example of δp for board

for estimating pronunciation are the current grapheme
si, its context in a window (si±k), and their generalized
features, where k is the context window size. We set
k=3 which shows the best result.

Figure 5 shows an example of estimating pronunci-
ation for the English word board. In our pronunciation
estimator, SW is represented as follows:

XP = {xP (s1), xP (s2), . . . , xP (sn)}
xP (si) = {L3(FP ), L2(FP ), L1(FP ), C0(FP ),

R1(FP ), R2(FP ), R3(FP )}
FP = < fS , fGS >

In Fig. 5, (L1, L2, L3 ) represents the left three
contexts; and (R1, R2, R3 ) represents the right three
contexts. C0 means the current English grapheme
which corresponding phoneme should be estimated, and
δp(C0) means the estimated phoneme of C0. $ is a
symbol for representing the start or end of words. The
result can be interpreted as follows. The most rele-
vant phoneme that can be generated from C0={fS=b,
fGS=C} is /B/ in the context of L3, L2, L1, C0, R1,
R2 and R3. Others are generated in the same manner.
Thus, we can get the pronunciation of board as /B AO
R D/ by concatenating generated phoneme sequences,
δp(s1 = b), δp(s2 = o), . . . , δp(sn = d). Note that /∼/
is ignored in concatenating phoneme sequences because
it is silent.

3.2.2 Generating Korean Transliterations

Let SW = s1, s2, . . . , sn be a source language word,
PSW = δp(s1), δp(s2), . . . , δp(sn) be SW ’s pronunci-
ation, and TW = δt(gp1), δt(gp2), . . . , δt(gpn); gpi =
(si, δp(si)) be a target language word of SW, where
si, δp(si), and δt(gpi) represent the ith source language
grapheme, si’s corresponding phoneme, and gpi’s corre-
sponding target language grapheme, respectively. Gen-

erating transliteration function, δt, finds the most prob-
able target language grapheme among a set of all pos-
sible target language grapheme candidates, which can
be derived from gpi = (si, δp(si)). Training data is
acquired from an EPK alignment result described in
Sect. 3.1. We use four feature types: fS , fP , fGS , and
fGP .

Figure 6 shows an example of δt. SW (board) and
PSW are represented as follows.

XT = {xT (s1), xT (s2), . . . , xT (sn)}
xT (si) = {L3(FT ), L2(FT ), L1(FT ), C0(FT ),

R1(FT ), R2(FT ), R3(FT )}
FT = < fS , fP , fGS , fGP >

In Fig. 6, (L1, L2, L3 ) represents the left three
contexts and (R1, R2, R3 ) represents the right three
contexts. C0 means the current source language
grapheme and phoneme to be transliterated, and
δt(C0 ) means generated target language graphemes
(Korean graphemes). The result in Fig. 6 can be
interpreted as follows. The most probable Korean
grapheme of C0={fS=b, fP =/B/, fGS=C, fGP =C}
is δt(C0 )=‘b’ in the context of L1, L2, L3, C0, R1, R2
and R3. Other Korean graphemes can be generated by
the same manner. We can get a Korean transliteration
of board and /B AO R D/ as ‘bo-deu’. Note that ‘∼’ is
ignored because it is a null grapheme.

3.3 Machine Learning Methods For English-to-
Korean Transliteration

In this subsection we will describe a way of model-
ing component functions using three machine learning
methods (maximum entropy model, decision tree and
memory-based learning).

3.3.1 Maximum Entropy Model

The maximum entropy model is a widely used proba-
bility model, which can incorporate heterogeneous in-
formation effectively. It does not require independence
assumption to divide an event into sub-events and it en-
ables flexible modeling with many overlapping features
[21], [22]. An event ev is usually composed of a target
event (t) and a history event (h), say ev = (t, h). In
the maximum entropy model, event ev is represented
by a bundle of feature functions, fi(ev), which repre-
sent the existence of a certain characteristic in event
ev. A feature function is a binary valued function. It
is activated (fi(ev) = 1) when it meets its activating
condition otherwise it is deactivated (fi(ev) = 0) [21],
[22].

The maximum entropy model, pM , is a log-linear
model that gives a conditional probability of event ev
as described in Eq. (6), where τ(h) is a set of targets
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type 

Index

Fig. 6 An example of δt for board

observable with history h, αi is a model parameter, and
Zh is the normalization factor. αi represents a weight
of feature function fi(ev) = fi(t, h).

pM (t|h) =
1

Zh

∏

i

α
fi(t,h)
i (6)

Zh =
∑

t′∈τ(h)

∏

i

α
fi(t,h)
i

The maximum entropy model yields a probability
distribution that maximizes the likelihood of training
data being given a set of feature functions. In other
words, it yields model parameters that maximize the
model’s likelihood. GIS (Generalized Iterative Scaling),
IIS (Improved Iterative Scaling), and L-BFGS (Limited-
Memory Variable Metric) algorithm are well-known al-
gorithms used to estimate model parameters in the
maximum entropy model. Among them, L-BFGS has
been found to be effective for parameter estimation [16].

t∗ = argmaxt∈2P pM (δp)(t|h) =
1

Zh

∏

i

α
fi(t,h)
i (7)

t∗ = argmaxt∈2T pM (δt)(t|h) =
1

Zh

∏

i

α
fi(t,h)
i

Zh =
∑

t′∈τ(h)

∏

i

α
fi(t,h)
i

fi(t, h) =





1, if h(si) = ej &
t(δp(si)) = pk

0, otherwise
(8)

fj(t, h) =





1, if h(δp(si)) = pj &
t(δt(si, δp(si))) = tk

0, otherwise

δp and δt based on the maximum entropy model
can be represented as Eq. (7). Given the history event
or activated feature function, δp finds the most proba-
ble phonemes, which maximize pM (δp), and δt finds the
most probable target language graphemes, which maxi-
mize pM (δt). A target event of δp is a phoneme in a set
of 2P and that of δt is a target language grapheme in
a set of 2T . A feature function in each module is con-
structed using defined features: (fS , fGS) for δp and
(fS , fP , fGS , fGP ) for δt. Equation (8) shows some
examples of the feature functions that we used. We use
an L-BFGS algorithm for estimating a model parame-
ter, and Zhang’s maximum entropy modeling tool to
implement δp and δt [16].

3.3.2 Decision Tree

Decision tree learning is one of the most widely used
and well-known methods for inductive inference. It is a
method for approximating discrete-valued target func-
tions, in which the learned function is represented by a
decision tree [23]. Learned trees can also be represented
as sets of if-then rules which can readily be expressed
so that humans can easily understand them. A decision
tree is composed of a leaf node and a decision node. A
leaf node indicates a class of examples and a decision
node specifies some test to be carried out on a single
attribute, with one branch and a sub-tree for each pos-
sible outcome of the test. A decision tree can be used
to classify an example by starting at the root of the
tree and moving through it up to the leaf node, which
provides a class of the example.

ID3 is a greedy algorithm which constructs decision
trees in a top-down manner [17]. It searches through
the attributes of the training instances and extracts the
attribute that best separates the given examples. If the
attribute perfectly classifies the training sets then ID3
stops; otherwise it recursively does the operation and
partitions subsets to get their best attribute until it
meets stop criteria. An important thing in construct-
ing a decision tree is to select an attribute which is
most useful for classifying examples at each node in
the tree. ID3 adopts a statistical measure called infor-
mation gain that measures how well a given attribute
separates training examples according to their target
classification. In other words, information gain is the
expected reduction in entropy caused by partitioning
examples according to selected attribute [18].
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Fig. 7 A fraction of decision tree for pronunciation estimation

We use C4.5 which is a well-known tool for decision
tree learning and implementation of Quinlan’s ID3 al-
gorithm. Figure 7 shows a fraction of our decision tree
for δp. In the figure, rectangles indicate a leaf node and
circles indicate a decision node. In order to simplify our
examples, we do not use fGS . In Fig. 7, we can infer
that attribute C0 (fS), which means the current English
grapheme, has higher information gain than any other
attribute because it is the first attribute to be tested.
A decision tree for δp is constructed with an attribute
sequence, C0(fS), R1(fS), R2(fS) and so on. Given in-
put data, x, its class (phoneme corresponding to source
language grapheme o) is determined as /AO/ by re-
trieving the decision tree from C0(fS)=o to R2(fS)=r.
In Fig. 7, (∗) indicates a path for the decision.

3.3.3 Memory-Based Learning

Memory-based learning (MBL) is an example based
learning method. It is also called instance-based learn-
ing and case based learning method [24]–[26]. It is
based on a k-nearest neighborhood algorithm [25], [27].
MBL algorithm represents a training object as a vec-
tor composed of feature, feature value and the object’s
class. In the training phase, MBL puts all training data
as examples in memory and clusters some examples
with a k-nearest neighborhood principle. It then out-
puts a result or a class using similarity-based reasoning
between input data and examples in memory Let in-
put data be x and a set of examples in memory be
Y, the similarities between x and Y are estimated by
a distance function, 4(x, Y ). Modified value difference
metric, overlap metric, Jeffrey divergence metric, and dot
product metric are usually used as 4(x, Y ) [19]. MBL
selects an example yi or a cluster of examples that are
most similar to x, and then it assigns the yi’s class or
the class of the cluster to an x’s class.

We use a memory-based learning tool called TiMBL
(Tilburg memory-based learner) version 5.0 [19]. We

fS
fS
fS
fS
fS
fS
fS
fS
fS
fS
Feature type

0 . 75/ W /draode$6
0 . 73/ A O /sraoc$$5
0 . 81/ O W /$taob$$4
0 . 81/ O W /tsaob$$3

/ O W /
/ O W /
/ U W /
/ A O /

/ O W /
/ A O /
δp (C 0 )

0 . 81slaob$$1 0
0 . 81$naob$$9
0 . 51$tuobae8
0 . 1 6$$waskc7

0 . 38$$$obah2
0 . 93draoba$1 *
�(x , yi)R 3R 2R 1C 0L 1L 2L 3yi

fS
F e at u re  t y p ex

���� / A O /draob$$
δp (C 0 )R 3R 2R 1C 0L 1L 2L 3

Training instances in a memoryTraining instances in a memory

Fig. 8 Memory-based learning for pronunciation estimation

set the distance function as an overlap metric, which
shows the best result for our task. Figure 8 shows ex-
amples of δp based on MBL. All training data are rep-
resented with their features and their class (δp(C0) in
Fig. 8). They are stored in memory through a training
phase. By comparing the similarities between x and Y
using distance metric 4(x, Y ), we can output the y1’s
class /AO/ as an x’s class in Fig. 8.

4. Experiments

4.1 Experimental Setup

We perform experiments for English-to-Korean translit-
eration using two data sets. They contain an English
word and its corresponding standard Korean translit-
eration. Test Set I [3], [5] is composed of 1,650 English-
Korean transliteration pairs. Since the test set was used
as a common test bed for previous English-to-Korean
transliteration methods, we use it for comparison be-
tween our method and the previous ones. For compari-
son purposes, 1,500 pairs are used as training data and
150 pairs are used as test data. Test Set II [8], [10] con-
sists of 7,185 E-K pairs; the number of training data is
6,185 and that of test data is 1,000. We use Test Set II
for several tests.

Evaluation is performed by word accuracy (W. A.)
and character accuracy (C.A.), which were used as the
evaluation measure in the previous works (Eq. (9)).

W.A. =
# of correct transliterations

# of generatedtransliterations
(9)

C.A. =
L− (i + d + s)

L

where L represents the length of the original string, and
i, d, and s represent the number of insertions, deletions
and substitutions, respectively. If L < (i + d + s), we
consider it as zero [28].



OH and CHOI: MACHINE LEARNING BASED ENGLISH-TO-KOREAN TRANSLITERATION
11

Table 7 Results of Comparison Test for Test Set I: HST is
evaluated with top-20 results generated by both his grapheme-
based transliteration model and phoneme-based one. The top-
20 results are ranked by their probability. Lee reported that
the hybrid results were better than those generated by either
grapheme-based method or phoneme-based one.

Method C.A. W.A. PI

Previous HST 69.3% 40.7% 53.98%
works GNN 79.00% 35.10% 78.55%

GDT 78.10% 37.60% 66.68%
GTN 86.50% 55.30% 13.33%

Proposed MEM 86.15% 51.72% 21.17%
DT 90.35% 58.33% 7.44%
MBL 91.51% 62.67% 0%

Table 8 Results of Comparison Test for Test Set II.

Method C.A W.A PI

Previous GDT 81.80% 51.40% 24.32%
works GMEM 85.36% 52.40% 21.95%

GTN 88.05% 55.10% 15.97%
Proposed MEM 87.54% 53.90% 18.55%

DT 90.26% 61.60% 3.73%
MBL 90.45% 63.50% 0%

We perform three experiments as follows.

• Comparison Test: Comparison between our
grapheme & phoneme-based transliteration (ψGPT )
and the previous English-to-Korean transliteration
methods.

• Dictionary Test: Evaluating the performance of
ψGPT by a way of “generating pronunciation” (dic-
tionary search and estimating pronunciation) in δp.

• Training Data Size Test: Evaluating the perfor-
mance of ψGPT when the training data size has
been changed

4.2 Experimental Results

4.2.1 Comparison Test

Table 7 and 8 show results of Comparison Test for Test
Set I and Test Set II, respectively. In this test, we use
ψGPT using the maximum entropy model (MEM), deci-
sion tree (DT), and memory-based learning (MBL). The
previous works to be compared are HST [3], [5], GNN
[4], GDT [6], [8], GTN [7], and GMEM [1]. In this result,
we perform external comparison (between ours and the
previous ones), and internal comparison (between the
machine learning methods that we use).

From the viewpoint of external comparison, our
method outperforms the previous ones both in W.A.
and C.A. Our method shows significant performance
improvement (PI) about 13%∼78% in Test Set I, and
about 16%∼24% in Test Set II. From the result, we
found phoneme information not previously considered
that provides the key-point in performance improve-
ment. From the viewpoint of a machine learning tech-
nique and the framework of transliteration, our DT

(Decision Tree) method and the previous decision tree
based method used by Kang [6], [8] are very similar.
The only difference is whether phoneme information as
well as grapheme information is used or not. This is the
main reason why there is a performance gap between
ours and the previous method.

From the viewpoint of internal comparison, the
winner is MBL, followed by DT, and finally MEM. This
result indicates that the vector-based method (MBL) is
better than the rule-based (DT) and the probability-
based methods (MEM) in our task. MEM shows the
lowest position and the biggest performance gap in
comparison with the others. We find two main reasons
for this phenomenon. The first one is high ambiguity of
vowel transliteration. There are many more candidates
for vowel transliteration than there are for consonant
transliteration. On average, more than 10 candidates
are generated for a vowel, while only 1∼4 candidates
are generated for a consonant. Though others also suf-
fer from high ambiguity, MEM is more sensitive to it
due to its probabilistic nature. The second reason is its
sensitivity to data sparseness; MEM shows lower per-
formance when there is smaller training data. Though
others also suffer from the data sparseness problem,
they have greater ability to control it with similarity
reasoning and decision rules using fraction of features.
Even though MEM gives high weights to discrimina-
tive features and adopts a Gaussian smoothing method,
limitations on handling the data sparseness problem are
due to its probabilistic nature. The probabilistic mod-
els for English-to-Korean transliteration, such as Lee’s
method [3], [5] and Kim’s [4] in Table 7 fail to achieve
good performance for the same two reasons - high am-
biguity of vowel transliteration and sensitivity to the
data sparseness problem.

4.2.2 Dictionary Test

For the Dictionary Test, we use Test Set II. First, we
evaluate the performance of our method in terms of
existence and nonexistence of pronunciation in the pro-
nunciation dictionary (Dictionary Test I). Second, we
investigate the performance of our method when pro-
nunciation dictionary is not used (Dictionary Test II).

Table 9 shows results of Dictionary Test I. In Ta-
ble 9, R represents performance of ψGPT when it uses
a pronunciation dictionary search, and NR represents
when it uses estimating pronunciation in pronunciation
generation as δp. The number of words in R is 687 and
that in NR is 313. From the viewpoint of comparison
between R and NR, R shows higher performance than
NR. This indicates that correct pronunciation is very
helpful to generate correct Korean transliterations in
ψGPT . We find that the performance of NR is the key
point to determine whether a certain machine learning
method is better, because the performance gap between
the best one and the worst one in NR is much bigger
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Table 9 Results of Dictionary Test I

R NR

MBL C.A. 90.83% 87.10%
W.A. 68.58% 52.40%

DT C.A. 89.86% 87.10%
W.A. 66.23% 50.16%

MEM C.A. 89.24% 83.31%
W.A. 60.70% 38.34%

Table 10 Results of Dictionary Test II

MBL C.A. 88.46%
W.A. 56.90%

DT C.A. 87.43%
W.A. 56.30%

MEM C.A. 85.12%
W.A. 47.40%

than that in R. The main reason for the bigger gap is er-
rors in estimating pronunciation; the higher the perfor-
mance in estimating pronunciation results, the higher
the performance in generating Korean transliterations
in the result. Note that estimating pronunciation based
on MBL shows about 65% word accuracy, while that
based on MEM shows about 48% word accuracy in our
system.

Table 10 shows the results of Dictionary Test II.
The W.A. of MBL and DT is about 56∼57%. Because
[6], [8] in Table 8 and our DT adopt the same machine
learning algorithm, say the decision tree, they can be
directly and indirectly compared as ψGT and ψGPT ,
respectively. In the comparison, our method shows
about 9% performance improvement, though the per-
formance gap between Kang’s method and ours when
the pronunciation dictionary used is much bigger. In
the Dictionary Test II, we find that our method shows
reasonable performance even though there is not pro-
nunciation dictionary.

4.2.3 Training Data Size Test

Table 11 shows results of the Training Data Size Test
in which we use Test Set II. Table 11 shows the per-
formance of ψGPT when training data is changed from
20% to 100%. Obviously, the more training data we
have, the higher the system performance. However,
we wanted to test, here, whether our method shows
reasonable performance even if there is small training
data. Unfortunately, MEM fell short of our expecta-
tions because of its probabilistic nature as described in
Sect. 4.2.1. But in this case, even if 20% of training
data is used, ψGPT based on MBL and DT shows rela-
tively high performance compared with 100% training
size performance.

4.3 Summary

The experimental results in this section can be summa-
rized as follows:

Table 11 Results of Training Data Size Test

20% 40% 60% 80% 100%

MBL C.A. 87.9% 88.4% 88.8% 89.5% 90.5%
W.A. 58.4% 59.7% 60.5% 62.6% 63.5%

DT C.A. 87.4% 87.8% 88.1% 89.8% 90.3%
W.A. 54.9% 56.4% 58.2% 60.3% 61.6%

MEM C.A. 85.7% 86.9% 87.2% 87.0% 87.5%
W.A. 47.9% 50.6% 51.6% 51.4% 53.9%

• Our method outperforms the previous ones in that
it achieves about 13%∼78% performance improve-
ments (Comparison Test).

• MBL is the best machine learning method in our
task (Comparison Test).

• Correct pronunciation is very helpful to generate a
correct Korean transliteration (Dictionary Test).

• Our method shows reasonable performance even
if there is small training data: with 20% training
data our method achieves about 55%∼59% W.A
(Training Data Size Test).

5. Conclusion

We propose a grapheme and phoneme-based ma-
chine transliteration model (ψGPT ). Unlike the pre-
vious works, our method uses both grapheme and
phoneme information in English-to-Korean translitera-
tion. Through this combination, we achieve 13%∼78%
performance improvements.

In this paper, we showed that grapheme informa-
tion as well as phoneme information is useful for ma-
chine transliteration. In experiments, we showed that
MBL is the best machine learning method in our task
and correct pronunciation is very helpful to generate
a correct Korean transliteration. Our method shows
reasonable performance even if there is small train-
ing data: with 20% training data our method achieves
about 55%∼59% W.A.

In future work, we will use other machine learning
methods such as SVM [29]. Our method may be use-
ful in various NLP applications such as automatic bi-
lingual dictionary construction, information retrieval,
machine translation, speech recognition and so on.
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